
Intro to tvOS
CS193W - Spring 2016 - Lecture 7

Apple TV

• Apple’s “most communal” device

• Always connected to (fast) Internet

• Limited local storage

Apple Watch Apple TV

Apple's "most personal device" Apple's “most communal device”

Tied to a particular user Can be used by different users

Worn on the body Used from across the room

Moves with the user Stationary

Tiny screen Large screen

Often used with no connectivity Has persistent fast conection

Limited persistent storage Limited persistent storage

Touch screen Remote control

Apple Watch vs Apple TV

The Siri Remote

Interacting Via the Touch
Surface

swipe  
Used to scroll with inertia

tap 
Used to navigate through a collection of items one at
a time

click  
Used to make a selection  
 
Plan for inadvertent taps.

Home Button

• Works the same as the iOS Home Button

• Tapping once goes back to the home screen

• Doubling tapping brings up the list of recently used
apps

Menu Button

• Works as a back button

• No need for back button UI on screen (e.g. like iOS
/ WatchOS have for Navigation Controllers)

Play/Pause Button

• This is, primarily, still a TV

• Use this as a queue to start playing content
immediately

Sensors

• The Siri remote is equipped with an accelerometer
and a gyroscope

• These are used mostly for games (like the Nintendo
Wii)

Apple TV UI

Design Principles
Connected 
When the user interacts with the remote, the Apple TV
should respond as if the user was directly manipulating
the screen.

Clear 
It should be obvious how things work, even from
across the room.

Immersive  
It’s a TV! Use edge-to-edge media whenever possible.

The Home Screen

The Top Shelf

Focus

Parallax

One screen size

But, cropping can occur on
older TVs

• Use UIScreen().overscanCompensationInsets
to determine the appropriate insets

UIKit / tvML

• Unlike WatchOS, tvOS supports a large portion of
UIKit

• It also supports a markup language called TVML
(analogous to HTML), with scripting via JavaScript

• We’ll talk about UIKit today.

UIKit Interface Elements
• UINavigationBar

• UITabBar

• UITableView

• UICollectionView

• UIAlertController

• UISearchController

• UILabel

• UITextField

• UITextView

 and many more…

Differences in iOS and
tvOS UIKit

Notable UIKit Interface
Elements not in tvOS

• UIDatePicker

• UIImagePickerController

• UIRefreshControl

• UISlider

• UISwitch

• UIToolbar

• UIWebView

__TVOS_PROHIBITED
• tvOS uses the same UIKit API as iOS, but marks

unsupported APIs with __TVOS_PROHIBITED

• e.g. UIWebView is unsupported

UIButton in tvOS

Use the .PrimaryActionTriggered event (as
opposed to, say, .TouchUpInside):

button5.addTarget(self, action: "tappedButton",
forControlEvents: .PrimaryActionTriggered)

Tap Gesture Recognizers
• UITapGestureRecognizer works as expected. You

can set allowedTouchTypes to a UIPressType:

.Select - the default (pressing the touch surface)

.Menu - the menu button

.PlayPause - the play/pause button

tapRecognizer.allowedPressTypes  
 = [NSNumber(integer: UIPressType.PlayPause.rawValue)];

Low Level Press Event
Handling

• UIPress is analogous to UITouch

• You can use the UIPressesBegan /
UIPressesEnded / UIPressesChanged /
UIPressesCanceled event handlers analogous
to UITouchesBegan / Ended / Changed /
Canceled

• Use pressType to get the button pressed

Debugging tvOS Apps in
the Simulator

Apple TV Remote Simulator
• In Simulator, go to

Hardware -> Show Apple
TV Remote

• Hold Option and move
your finger around on
your trackpad to simulate
touches/swipes

• Click the trackpad to click

Navigation

• There are two modes of navigation on tvOS

1. The Focus Engine

2. The Game Controller Framework

Navigating Using the Focus
Engine

• Each view has an initially focused subview called
the preferred focus view

• The user can then navigate to other subviews by
swiping the touch surface

• Horizontally, vertically, diagonally all work

canBecomeFocused
• UIView has a method canBecomeFocused() which

is used to determine if a view can become focused

• In addition a view is not focusable if is non-interactible:

• It is hidden

• It has alpha = 0

• userInteractionEnabled = false

• It is not in the current view hierarchy

Focusable UIViews
• The following UIKit classes are focusable:

• UIButton

• UIControl

• UISegmentedControl

• UITabBar

• UITextField

• UISearchBar (or more specifically, its internal text field)

• And optionally, UITableViewCell / UICollectionViewCell

Getting the Current Focused
View

• Use UIScreen’s focusedView to determine the
current focused view (read only)

• You can also use UIView’s focused to determine if
a particular view is focused

Default Preferred Focused
View

• By default, the closet focusable view to the top-left
corner of the screen is focused

Overriding the Default
Focused View

• UIView, UIViewController, UIWindow, and
UIPresentationController all conform to the
UIFocusEnviroment protocol

• UIFocusEnvironment’s
preferredFocusedView (read only) is used to
determine the preferred focused view

The Focus Chain
• For each view, get its preferredFocusedView

and recurse, forming a list of views called the
Focus Chain. The focus chain ends if a non-
interactible view is encountered. The first focusable
view encountered in the Focus Chain is focused.

• By default, a UIView returns self (which results in
the top-leftmost view being selected) and a
UIViewController returns its root view

Setting preferredFocusedView for
a View Controller in a Storyboard

Control-drag

In the popup that appears,  
 choose preferredFocusedView

Making UITableViewCells /
UICollectionViewCells focusable

optional func tableView(_ tableView: UITableView,  
 canFocusRowAtIndexPath indexPath: NSIndexPath) -> Bool

optional func collectionView(_ collectionView: UICollectionView,  
 canFocusItemAtIndexPath indexPath: NSIndexPath) -> Bool

By default, these return true.

https://developer.apple.com/library/tvos/documentation/UIKit/Reference/UITableView_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UITableView
https://developer.apple.com/library/tvos/documentation/Cocoa/Reference/Foundation/Classes/NSIndexPath_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSIndexPath
https://developer.apple.com/library/tvos/documentation/Swift/Reference/Swift_Bool_Structure/index.html#//apple_ref/swift/struct/s:Sb
https://developer.apple.com/library/tvos/documentation/UIKit/Reference/UICollectionView_class/index.html#//apple_ref/swift/cl/c:objc(cs)UICollectionView
https://developer.apple.com/library/tvos/documentation/Cocoa/Reference/Foundation/Classes/NSIndexPath_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSIndexPath
https://developer.apple.com/library/tvos/documentation/Swift/Reference/Swift_Bool_Structure/index.html#//apple_ref/swift/struct/s:Sb

Debugging Focus Issues

• Apple recommends the use of an internal API,
_whyIsThisViewNotFocusable

po self.customView.performSelector(Selector(“_whyIsThisViewNotFocusable”))

Changing the Focus
• Swiping the touch surface will cause the system to

look for the next focusable view in the direction of
the swipe starting from the current focused view

An interesting case

Focus Guides

UIFocusGuide

preferredFocusedView

Focus Guide Code

let focusGuide = UIFocusGuide()
self.view.addLayoutGuide(focusGuide)

button2.leftAnchor.constraintEqualToAnchor(focusGuide.leftAnchor).active = true
button2.rightAnchor.constraintEqualToAnchor(focusGuide.rightAnchor).active = true
button4.topAnchor.constraintEqualToAnchor(focusGuide.topAnchor).active = true
button4.bottomAnchor.constraintEqualToAnchor(focusGuide.bottomAnchor).active = true

focusGuide.preferredFocusedView = button4

Focus Update Callbacks on
UIFocusEnvironment

Recall that UIFocusEnvironment implementors includes UIView, UIViewController,
UIWindow, and UIPresentationController.

func shouldUpdateFocusInContext(_ context: UIFocusUpdateContext) ->
Bool

func didUpdateFocusInContext(_ context: UIFocusUpdateContext,  
 withAnimationCoordinator coordinator: UIFocusAnimationCoordinator)

Called on all focus environments that contain the previously focused view and the newly focused
view.

https://developer.apple.com/library/prerelease/tvos/documentation/UIKit/Reference/UIFocusUpdateContext_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UIFocusUpdateContext
https://developer.apple.com/library/prerelease/tvos/documentation/Swift/Reference/Swift_Bool_Structure/index.html#//apple_ref/swift/struct/s:Sb
https://developer.apple.com/library/prerelease/tvos/documentation/UIKit/Reference/UIFocusUpdateContext_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UIFocusUpdateContext
https://developer.apple.com/library/prerelease/tvos/documentation/UIKit/Reference/UIFocusAnimationCoordinator_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UIFocusAnimationCoordinator

UIFocusUpdateContext
weak var previouslyFocusedView: UIView? { get }

weak var nextFocusedView: UIView? { get }

var focusHeading: UIFocusHeading { get }

struct UIFocusHeading : OptionSetType {
 init(rawValue rawValue: UInt)
 static var Up: UIFocusHeading { get }
 static var Down: UIFocusHeading { get }
 static var Left: UIFocusHeading { get }
 static var Right: UIFocusHeading { get }
 static var Next: UIFocusHeading { get }
 static var Previous: UIFocusHeading { get }
}

https://developer.apple.com/library/prerelease/tvos/documentation/UIKit/Reference/UIView_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UIView
https://developer.apple.com/library/prerelease/tvos/documentation/UIKit/Reference/UIView_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UIView
https://developer.apple.com/library/prerelease/tvos/documentation/Swift/Reference/Swift_OptionSetType_Protocol/index.html#//apple_ref/swift/intf/s:Ps13OptionSetType
https://developer.apple.com/library/prerelease/tvos/documentation/Swift/Reference/Swift_UInt_Structure/index.html#//apple_ref/swift/struct/s:Su

Coordinating Animations
With Focus Change

• When focus changes, there are two system-
generated animations:

• The previous view becomes unfocused

• The new view becomes focused  

Depending on the speed of the swipe, the duration
of the animations will differ. Generally, unfocusing
animations run slower than focusing.

UIFocusAnimationCoordinator

 override func didUpdateFocusInContext(context: UIFocusUpdateContext, 
 withAnimationCoordinator coordinator: UIFocusAnimationCoordinator) {
 super.didUpdateFocusInContext(context, withAnimationCoordinator: coordinator)

 let button4Focused = (context.nextFocusedView == self.button4)

 coordinator.addCoordinatedAnimations({
 button4Title.alpha = button4Focused ? 1 : 0
 },
 completion: nil
)
 }

Coordinated animations are run at the same speed as the focus update animations.

To explicitly access the animation duration, call the UIView’s class method while in an animation
block: 
 
class func inheritedAnimationDuration() -> NSTimeInterval

The completion block will be called after the focus update is called.

https://developer.apple.com/library/prerelease/tvos/documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_DataTypes/index.html#//apple_ref/swift/tdef/c:@T@NSTimeInterval

