
Glances, Notifications,
and Handoff

CS193W - Spring 2016 - Lecture 4

Glances
• A single screen of content that provides an at-a-

glance summary of your app

Adding Glances to your
Project

• Easy Way: Add them when you create your
WatchKit App Target

Or Add it Later

1. Add a glance class to your WatchKit Extension
target

2. Create a Glance interface controller in your
WatchKit App Storyboard

3. Create a Glance Scheme (for debugging
purposes)

Code & Storyboard

• There is nothing special about the
code of a glance. It is just a
WKInterfaceController.

• You do use a special interface
object however.

Adding a Glance Scheme
1. Go to Product -> Scheme -> New Scheme

2. Make the target your WatchKit Extension Scheme

Adding a Glance Scene
(cont’d)

3. Go to Product -> Scheme -> Edit Scheme

4. Choose your WatchKit App for Executable

5. Choose Glance for Watch Interface

Glance Interface Guidelines
• Design your glance to convey information quickly.

• Focus on the most important data.

• Do not include interactive controls in your glance interface.

• Avoid tables and maps in your glance interface. Although they are
not prohibited, the limited space makes tables and maps less useful.

• Be timely with the information you display. Use all available
resources, including time and location to provide information that
matters to the user.

• Use the system font for all text. To use custom fonts in your glance,
you must render that text into an image and display the image.

Glance Templates

Tapping on a Glance

• Tapping anywhere on a glance should bring the
user to a page in your app

• But, the Glance and the App run in separate
sandboxes. Can’t simply pass in the context.

• Use Handoff to communicate the context of the
glance at the time of the tap

Handoff
• Handoff allows one executable to pass contextual

info to another

• For example, a Glance passing context to a
WatchKit App

• Handoff can be used to pass info from a WatchKit
app to an iPhone app, an iPhone app to a iPad
app, an iPad app to a Mac App, etc.

Handoff API
(WKInterfaceController)

func updateUserActivity(_ type: String,  
 userInfo userInfo: [NSObject : AnyObject]?, 
 webpageURL webpageURL: NSURL?)

func handleUserActivity(_ userInfo: [NSObject : AnyObject]?)

func invalidateUserActivity()

In the Glance, call updateUserActivity to register the current activity. Call
updateUserActivity again if the current activity changes, and call invalidateUserActivity
to unregister the current activity.

handleUserActivity is called when entering the WatchKit app interface controller after tapping on
the Glance.

https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSObject
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:PSs9AnyObject
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSURL_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSURL
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSObject
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:PSs9AnyObject

updateUserActivity

For example, in your glance interface controller, call:

updateUserActivity("com.cs193w.flight-tracker.glance",
userInfo: ["flight": "AA164"], webpageURL: nil)

type is a reverse-DNS-style string that represents the type of user activity. It is
not really used for Glances; just choose something unique.

webpageURL is not relevant to glances since the Apple Watch doesn’t have a
browser. It can be used to open a webpage on the user’s iPhone from an
interface controller in the WatchKit app.

handleUserActivity

In your app, handleUserActivity(userActivity:
[AnyObject]) is called in your initial interface controller.

In a page-based interface, it is called on every interface controller
that is part of your initial interface.

Do not call super in handleUserActivity.

Handing off to an iPhone

• To hand off to an iPhone, you must add an entry to
the iPhone app’s Info.plist with key
NSUserActivityTypes that contains the activity
types that the iPhone app supports.

Handoff Handlers in
UIApplicationDelegate

When the user invokes Handoff, the system will call:

optional func application(_ application: UIApplication,  
willContinueUserActivityWithType userActivityType: String) -> Bool

followed by: 

optional func application(_ application: UIApplication,  
 continueUserActivity userActivity: NSUserActivity,  
 restorationHandler restorationHandler: ([AnyObject]?) -> Void) -> Bool

In this method, call restorationHandler with an array of
objects; the system will call restoreUserActivityState:
on each of these objects.

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplication_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UIApplication
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_Bool_Structure/index.html#//apple_ref/swift/struct/s:Sb
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplication_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UIApplication
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSUserActivity_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSUserActivity
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:PSs9AnyObject
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_StandardLibrary_TypeAliases/index.html#//apple_ref/swift/tdef/s:Ss4Void
https://developer.apple.com/library/ios/documentation/Swift/Reference/Swift_Bool_Structure/index.html#//apple_ref/swift/struct/s:Sb

Notifications on iOS

Notifications on iOS Devices

• Two types of notifications: remote notifications and
local notifications

• Remote notifications are sent from a server

• Local notifications are sent from an iOS app

Three Aspects of
Notifications

• Sounds/Vibrate: An audible alert plays.

• Alerts/Banners: An alert or banner appears on the
screen.

• Badges: An image or number appears on the
application icon.

Registering for push
notifications

• The user must explicitly opt in to push notifications
(local and remote). 

 func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {

// to register for notification types
application.registerUserNotificationSettings(UIUserNotificationSettings(
forTypes: (.Badge
| .Sound | .Alert), categories: nil))

}

• The user will receive a prompt and can allow / deny
push notifications for the app. He can later change
this in the Settings app only.

Notification Actions

Notification Actions

• A category has a set of associated actions  

 let acceptAction = UIMutableUserNotificationAction()
 acceptAction.identifier = "ACCEPT_ACTION"
 acceptAction.title = "Accept"
 acceptAction.activationMode = .Background
 acceptAction.destructive = false
 acceptAction.authenticationRequired = false

Registering a Category

 let category = UIMutableUserNotificationCategory()
 category.identifier = "INVITE_CATEGORY"
 category.setActions([acceptAction, declineAction], forContext: .Minimal)
 category.setActions([acceptAction, declineAction, remindAction], forContext: .Default)

 application.registerUserNotificationSettings(UIUserNotificationSettings(forTypes: (.Badge
 | .Sound | .Alert), categories: [category]))

Inline Text Replies

let replyAction = UIMutableUserNotificationAction()
replyAction.identifier = "REPLY_ACTION"
replyAction.behavior = .TextInput

Scheduling a Local
Notification

 let notification = UILocalNotification()
 notification.alertAction = "View"
 notification.alertBody = "Bobby invited you to lunch."
 notification.alertTitle = "Invite from Bobby" // Shown on Apple Watch
 notification.fireDate = NSDate(timeIntervalSinceNow: 20)
 notification.timeZone = NSTimeZone.localTimeZone()
 notification.category = "INVITE_CATEGORY"

 application.scheduleLocalNotification(notification)

Receiving a Local
Notification

• App launched by notification:
 
optional func application(_ application: UIApplication,
 willFinishLaunchingWithOptions launchOptions: [NSObject : AnyObject]?) -> Bool

optional func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [NSObject : AnyObject]?) -> Bool

launchOptions is a NSDictionary. Look at the
UIApplicationLaunchOptionsLocalNotificationKey

• App launched previously:  

optional func application(_ application: UIApplication,
 didReceiveLocalNotification notification: UILocalNotification)

Handling a notification
action

optional func application(_ application: UIApplication,
 handleActionWithIdentifier identifier: String?,
 forLocalNotification notification: UILocalNotification,
 completionHandler completionHandler: () -> Void)

Remote Notifications

• Similar to local notifications, but come from a server

• You register for remote notifications like so:
 application.registerForRemoteNotifications()

You’ll get a callback on one of:

 optional func application(_ application: UIApplication,  
didRegisterForRemoteNotificationsWithDeviceToken deviceToken: NSData)

optional func application(_ application: UIApplication,  
didFailToRegisterForRemoteNotificationsWithError error: NSError)

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplication_Class/index.html#//apple_ref/swift/cl/UIApplication
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSData_Class/index.html#//apple_ref/swift/cl/NSData
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplication_Class/index.html#//apple_ref/swift/cl/UIApplication
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSError_Class/index.html#//apple_ref/swift/cl/NSError

Receiving Remote
Notifications

optional func application(_ application: UIApplication,
 didReceiveRemoteNotification userInfo: [NSObject : AnyObject],
 fetchCompletionHandler handler: (UIBackgroundFetchResult) -> Void)

UIBackgroundFetchResult -> UIBackgroundFetchResultNoData,
UIBackgroundFetchResultNewData, UIBackgroundFetchResultFailed

The application must call handler() within 30 seconds.

Or, look for UIApplicationLaunchOptionsRemoteNotificationKey in one of:

application:willFinishLaunchingWithOptions:
application:didFinishLaunchingWithOptions:

Notifications on Apple
Watch

3 Types of Notification Views
on Apple Watch

1. Short look - shown briefly

2. Long look - show if user keeps looking at short
look

a. Static long look

b. Dynamic long look

Short Look Long Look

Static vs Dynamic Long
Looks

notificationAlertLabel outlet

Static Notification Interfaces

• All images must reside in the WatchKit app bundle.

• The interface must not include controls, tables,
maps, or other interactive elements.

• The interface’s notificationAlertLabel outlet
must be connected to a label. The label’s contents
are set to the notification’s alert message. The text
for all other labels does not change.

Dynamic Notification
Interfaces

• Use labels, images, groups, and separators for
most of your interface.

• Include tables and maps only as needed in your
interface.

• Do not include buttons, switches, or other
interactive controls.

Adding a Notification Interface
Controller in the Storyboard

Sash and Title Color

Note also the Description, which is a format string displayed when multiple
notifications are received at once.

Assigning a Category to a
Notification Interface

Preparing the notification
interface

WKUserNotificationInterfaceController

• A subclass of WKInterfaceController

• Contains two additional methods:
func didReceiveLocalNotification(_ localNotification: UILocalNotification,  
 withCompletion completionHandler: (WKUserNotificationInterfaceType) -> Void)

func didReceiveRemoteNotification(_ localNotification: UILocalNotification,  
 withCompletion completionHandler: (WKUserNotificationInterfaceType) -> Void)

WKUserNotificationInterfaceType is either:

.Default - Show the static interface

.Custom - Show the dynamic interface

https://developer.apple.com/library/watchos/documentation/iPhone/Reference/UILocalNotification_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UILocalNotification
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_StandardLibrary_TypeAliases/index.html#//apple_ref/swift/tdef/s:Ss4Void
https://developer.apple.com/library/watchos/documentation/iPhone/Reference/UILocalNotification_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UILocalNotification
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_StandardLibrary_TypeAliases/index.html#//apple_ref/swift/tdef/s:Ss4Void

Configuring a Dynamic
Notification Interface

Receiving Notifications While
the Watch App is Running

In WKExtensionDelegate:
optional func didReceiveLocalNotification(_ userInfo: [NSObject : AnyObject])

optional func didReceiveRemoteNotification(_ userInfo: [NSObject : AnyObject])

https://developer.apple.com/library/watchos/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSObject
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:PSs9AnyObject
https://developer.apple.com/library/watchos/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSObject
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:PSs9AnyObject

Suggestions for Text Replies

Like a Text Input Controller, you can provide suggestions for text replies on
Apple Watch:

func suggestionsForResponseToActionWithIdentifier(_ identifier: String,  
 forLocalNotification localNotification: UILocalNotification,  
 inputLanguage inputLanguage: String) -> [String]

func suggestionsForResponseToActionWithIdentifier(_ identifier: String,  
 forRemoteNotification localNotification: UILocalNotification,  
 inputLanguage inputLanguage: String) -> [String]  
 

https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/watchos/documentation/iPhone/Reference/UILocalNotification_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UILocalNotification
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/watchos/documentation/iPhone/Reference/UILocalNotification_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UILocalNotification
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS

Handling Notification Actions
in WKExtensionDelegate

optional func handleActionWithIdentifier(_ identifier: String?, 
 forLocalNotification localNotification: UILocalNotification)

optional func handleActionWithIdentifier(_ identifier: String?, 
 forLocalNotification localNotification: UILocalNotification,  
 withResponseInfo responseInfo: [NSObject : AnyObject])

optional func handleActionWithIdentifier(_ identifier: String?, 
 forRemoteNotification remoteNotification: [NSObject : AnyObject])

optional func handleActionWithIdentifier(_ identifier: String?, 
 forRemoteNotification remoteNotification: [NSObject : AnyObject], 
 withResponseInfo responseInfo: [NSObject : AnyObject])

reponseInfo contains a UIUserNotificationActionResponseTypedTextKey which
contains the user’s quick reply response.

https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/watchos/documentation/iPhone/Reference/UILocalNotification_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UILocalNotification
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/watchos/documentation/iPhone/Reference/UILocalNotification_Class/index.html#//apple_ref/swift/cl/c:objc(cs)UILocalNotification
https://developer.apple.com/library/watchos/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSObject
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:PSs9AnyObject
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/watchos/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSObject
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:PSs9AnyObject
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_String_Structure/index.html#//apple_ref/swift/struct/s:SS
https://developer.apple.com/library/watchos/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSObject
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:PSs9AnyObject
https://developer.apple.com/library/watchos/documentation/Cocoa/Reference/Foundation/Classes/NSObject_Class/index.html#//apple_ref/swift/cl/c:objc(cs)NSObject
https://developer.apple.com/library/watchos/documentation/Swift/Reference/Swift_AnyObject_Protocol/index.html#//apple_ref/swift/intf/s:PSs9AnyObject

Debugging
Notification Handlers

Testing Remote Notifications
• Make a PushNotificationPayload.apns file:

{
 "aps": {
 "alert": {
 "body": "Test message",
 "title": "Optional title"
 },
 "category": "myCategory"
 },

 "WatchKit Simulator Actions": [
 {
 "title": "First Button",
 "identifier": "firstButtonAction"
 }
],

 "customKey": "Use this file to define a testing payload for your notifications. The aps
dictionary specifies the category, alert text and title. The WatchKit Simulator Actions array can
provide info for one or more action buttons in addition to the standard Dismiss button. Any other
top level keys are custom payload. If you have multiple such JSON files in your project, you'll
be able to select them when choosing to debug the notification interface of your Watch App."
}

How to make a .apns File
• File -> New -> File…

Does not need to be in a target.

Choosing a .apns file
Go to Product -> Scheme -> Edit Scheme…

Debugging Local
Notifications

• One strategy for debugging local notifications is to
fire off a local notification on a timer once the app
has gone to the background

• e.g. use dispatch_after in
applicationWillResignActive:

